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Motivation

Targeted application: compressible fluid flow (e.g., captive carry).

I Majority of MOR approaches in the literature for fluids are for
incompressible flow.

I Some works on MOR for compressible flows:
I Energy-based inner products: Rowley et al., 2004

(isentropic); Barone et al., 2007 (linear); Serre et. al, 2012
(linear); Kalashnikova et al., 2014 (nonlinear).

I GNAT method: Carlberg et al., 2013 (nonlinear).

MOR for nonlinear, compressible fluid flows is in its infancy!
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Projection-based model order reduction

Governing equations

I We consider the 3D compressible Navier-Stokes equations in
primitive specific volume form:

ζ,t + ζ,juj − ζuj ,j = 0,
ui ,t + ui ,juj + ζp,i − 1

Re ζτij ,j = 0,

p,t + ujp,j + γuj ,jp −
( γ
PrRe

)
(κ(pζ),j),j −

(
γ−1
Re

)
ui ,jτij = 0.

(1)
I For the compressible Navier-Stokes equations (1), spectral

discretization

(
q(x , t) ≈

n∑
i=1

ai (t) Ui (x)

)
+ Galerkin

projection yields a system of n coupled quadratic ODEs

da
dt

= C +La+
[

aTQ(1)a aTQ(2)a · · · aTQ(n)a
]T

(2)

where C ∈ Rn, L ∈ Rn×n and Q(i) ∈ Rn×n, ∀i = 1, . . . , n.
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Projection-based model order reduction

Summary of technical challenges
I Projection-based MOR necessitates truncation.

I POD is, by definition and design, biased towards the
large, energy producing scales of the flow (i.e., modes with
large POD eigenvalues).

I Truncated/unresolved modes are negligible from a
data compression point of view (i.e., small POD eigenvalues)
but are crucial for the dynamical equations.

I For fluid flow applications, higher-order modes are associated
with energy dissipation and thus, low-dimensional ROMs are
often inaccurate and sometimes unstable.

I For a ROM to be stable and accurate, truncated/unresolved
subspace must be accounted for (e.g., turbulence modeling ,
subspace rotation).
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Accounting for modal truncation

Traditional linear eddy-viscosity approach

I Dissipative dynamics of truncated higher-order modes are
modeled using additional linear term

da
dt

= C+(L+Lν)a+
[

aTQ(1)a aTQ(2)a · · · aTQ(n)a
]T

I Lν is designed to decrease magnitude of positive eigenvalues
and increase magnitude of negative eigenvalues of L + Lν (for
stability).

I Disadvantages of this approach:
1. Additional term destroys consistency between ROM and

Navier-Stokes equations.
2. Calibration necessary to derive optimal Lν and optimal value is

flow dependent.
3. Inherently a linear model → cannot be expected to perform

well for all classes of problems (e.g., nonlinear).
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Accounting for modal truncation

Proposed new approach
I Instead of modeling truncation via additional linear term,

model the truncation a priori by “rotating” the projection
subspace into a more dissipative regime.

I Standard approach: retain only the most energetic POD
modes, i.e., U1, U2, U3, U4 ...

I Proposed approach: choose some higher order basis to
increase dissipation, i.e., U1, U2, U6, U8, ...

I That is, approximate the solution using a linear superposition
of n + p (with p > 0) most energetic modes:

Ũi =

n+p∑
j=1

XjiUj i = 1, · · · , n, (3)

where X ∈ R(n+p)×n is an orthonormal (XTX = In×n)
“rotation” matrix.
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Accounting for modal truncation

Goals of proposed new approach:

Find X such that

1. New modes Ũ remain good approximations of the flow →
minimize the “rotation” angle, i.e. minimize ||X − I(n+p),n||F .

2. New modes produce stable and accurate ROMs → ensure
appropriate balance between energy production and energy
dissipation.

→ Extension of earlier work for incompressible flow (Balajewicz
et al., 2013).

Once X is found, the result is system of the form (2) with

Q
(i)
jk ←

n+p∑
s,q,r=1

XsiQ
(s)
qr XqjXrk , L← XTLX , C ← XTC ∗.

(4)
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1. New modes Ũ remain good approximations of the flow →
minimize the “rotation” angle, i.e. minimize ||X − I(n+p),n||F .

2. New modes produce stable and accurate ROMs → ensure
appropriate balance between energy production and energy
dissipation.

→ Extension of earlier work for incompressible flow (Balajewicz
et al., 2013).

Once X is found, the result is system of the form (2) with

Q
(i)
jk ←

n+p∑
s,q,r=1

XsiQ
(s)
qr XqjXrk , L← XTLX , C ← XTC ∗.

(4)

Tezaur, Balajewicz SAND2015-10147C ROM Workshop 7 / 24



Accounting for modal truncation

Goals of proposed new approach:

Find X such that
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Accounting for modal truncation

Trace minimization on Stiefel manifold

minimize
X∈V(n+p),n

− tr
(
XTI(n+p)×n

)
subject to tr(XTLX ) = η

(5)

where η ∈ R and

V(n+p),n ∈ {X ∈ R(n+p)×n : XTX = In , p > 0}. (6)

I Constraint comes from property that averaged total power
(= tr(XTLX )+energy transfer) has to vanish.

I η is a proxy for the balance between energy production and
energy dissipation (calculated iteratively using modal energy).

I Equation (5) is solved efficiently offline using method of
Lagrange multipliers (Manopt MATLAB toolbox).
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Accounting for modal truncation

Remarks

I Proposed approach may be interpreted as an a priori,
consistent formulation of the eddy-viscosity turbulence
modeling approach.

I Advantages of proposed approach:
1. Retains consistency between ROM and Navier-Stokes

equations → no additional turbulence terms required.
2. Inherently a nonlinear model → should be expected to

outperform linear models.
3. Works with any basis and Petrov-Galerkin projection.

I Disadvantage of proposed approach:
1. Off-line calibration of a free parameter, η is required.
2. Stability cannot be proven like for incompressible case.
3. Existence/uniqueness of solution to (5) is not guaranteed;

general rules-of-thumbs are available in (Balajewicz et al.,
2015).
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Applications

High angle of attack laminar airfoil
I 2D flow around an inclined NACA0012 airfoil at Mach 0.7,

Re = 500, Pr = 0.72, AOA = 20◦ ⇒ n = 4 ROM (86%
snapshot energy).
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Figure 1: Contours of velocity magnitude at time of final snapshot.
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Applications

High angle of attack laminar airfoil
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Figure 2: Nonlinear model reduction of the laminar airfoil. Evolution of
modal energy (a), and phase plot of the first and second temporal basis,
a1(t) and a2(t) (b); DNS (thick gray line), standard n = 4 ROM (dashed
blue line), stabilized n, p = 4 ROM (solid black line). Stabilizing rotation
matrix, X (c). Rotation is small: ||X − I(n+p)×n||F/n = 0.083,
X ≈ I(n+p)×n.
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Figure 3: Snapshot of high angle of attack airfoil at final snapshot;
contours of velocity magnitude. DNS (left), standard n = 4 ROM
(middle), and stabilized n, p = 4 ROM (right)
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Applications

Channel driven cavity: low Reynolds number case
I Flow over square cavity at Mach 0.6, Re = 1453.9, Pr = 0.72
⇒ n = 4 ROM (91% snapshot energy).
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Figure 4: Domain and mesh for viscous channel driven cavity problem

Tezaur, Balajewicz SAND2015-10147C ROM Workshop 13 / 24



Applications

Channel driven cavity: low Reynolds number case
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Figure 5: Nonlinear model reduction of channel drive cavity at
Re ≈ 1500. Evolution of modal energy (a) and phase plot of the first and
second temporal basis, a1(t) and a2(t) (b); DNS (thick gray line),
standard n = 4 ROM (dashed blue line), stabilized n, p = 4 ROM (solid
black line). Stabilizing rotation matrix, X (c). Rotation is small:
||X − I(n+p)×n||F/n = 0.118, X ≈ I(n+p)×n.
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Applications

Channel driven cavity: low Reynolds number case
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Figure 6: Snapshot of channel drive cavity Re ≈ 1500; contours of
u-velocity magnitude at the final snapshot. DNS (left), standard n = 4
ROM (middle) and stabilized n, p = 4 ROM (right)
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Applications

Channel driven cavity: low Reynolds number case
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Figure 7: PSD of p(x , t) where x = (2,−1) of channel drive cavity
Re ≈ 1500. DNS (thick gray line), stabilized n, p = 4 ROM (black line)
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Applications

Channel driven cavity: moderate Reynolds number case
I Flow over square cavity at Mach 0.6, Re = 5452.1, Pr = 0.72
⇒ n = 20 ROM (71.8% snapshot energy).
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Figure 8: Domain and mesh for viscous channel driven cavity problem
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Applications

Channel driven cavity: moderate Reynolds number case
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Figure 9: Nonlinear model reduction of channel drive cavity at
Re ≈ 5500. Evolution of modal energy (a); DNS (thick gray line),
standard n = 20 ROM (dashed blue line), stabilized n, p = 20 ROM
(solid black line). Stabilizing rotation matrix, X (b). Rotation is small:
||X − I(n+p)×n||F/n = 0.038, X ≈ I(n+p)×n.
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Applications

Channel driven cavity: moderate Reynolds number case
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Figure 10: Snapshot of channel drive cavity Re ≈ 5500; contours of
u-velocity magnitude at the final snapshot. DNS (left), standard n = 20
ROM (middle), and stabilized n, p = 20 ROM (right)
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Applications

Channel driven cavity: moderate Reynolds number case
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Figure 11: CPSD of p(x1, t) and p(x2, t) where x1 = (2,−0.5) and
x2 = (0,−0.5) of channel driven cavity at Re ≈ 5500. DNS (thick gray
line), stabilized n, p = 20 ROM (black line)

I Power and phase lag at the fundamental frequency, and first two
super harmonics are predicted accurately using the fine-tuned ROM.

I Phase lag at these three frequencies as predicted by the CFD and
the stabilized ROM is identified by red squares and blue triangles,
respectively.
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Applications

CPU times (CPU-hours) for off-line and on-line computations

Numerical Experiment

Procedure Airfoil
Cavity,
Low-Re

Cavity,
Moderate-Re

FOM # of DOF 360,000 288,250 243,750

Time-integration of FOM 7.8 hrs 72 hrs 179 hrs

Basis construction (size n + p ROM) 0.16 hrs 0.88 hrs 3.44 hrs

Galerkin projection (size n + p ROM) 0.74 hrs 5.44 hrs 14.8 hrs

Stabilization 28 sec 14 sec 170 sec

ROM # of DOF 4 4 20

Time-integration of ROM 0.31 sec 0.16 sec 0.83 sec

Online computational speed-up 9.1× 104 1.6× 106 7.8× 105
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Summary

I We have developed a non-intrusive approach for stabilizing
and fine-tuning projection-based ROMs for compressible flows.

I The standard POD modes are “rotated” into a more
dissipative regime to account for the dynamics in higher order
modes truncated by the standard POD method.

I The new method is consistent and does not require the
addition of empirical turbulence model terms unlike traditional
approaches.

I Mathematically, the approach is formulated as a quadratic
matrix program on the Stiefel manifold.

I This constrained minimization problem is solved offline and
small enough to be solved in MATLAB.

I The method is demonstrated on several compressible flow
problems and shown to deliver stable and accurate ROMs.
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Future work

I Extension of the proposed approach to problems with generic
non-linearities, where the ROM involves some form of
hyper-reduction (e.g., DEIM, gappy POD).

I Extension of the method to predictive applications, e.g.,
problems with varying Reynolds number and geometry.

I Selecting different objectives and constraints in our
optimization problem:

minimize
X∈V(n+p),n

f (X )

subject to g(X ,L)
(7)

e.g.,
I Maximize parametric robustness:

f =
∑k

i=1 βi ||U∗(µi )X −U∗(µi )||F .
I ODE constraints: g = ||a(t)− a∗(t)||.
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Thank you!
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Appendix: Accounting for modal truncation

Appendix: Stabilization algorithm: returns stabilizing rotation
matrix X .

Inputs: Initial guess η(0) = tr(L(1 : n, 1 : n)) (X = I(n+p)×n), ROM size n and p ≥ 1,
ROM matrices associated with the first n + p most energetic POD modes,
convergence tolerance TOL, maximum number of iterations kmax .

for k = 0, · · · , kmax
Solve constrained optimization problem on Stiefel manifold:

minimize
X (k)∈V(n+p),n

− tr
(
X (k)TI(n+p)×n

)

subject to tr(X (k)TLX (k)) = η
(k)
.

Construct new Galerkin matrices using (4).
Integrate numerically new Galerkin system.

Calculate “modal energy” E(t)(k) =
∑n

i (a(t)
(k)
i )2.

Perform linear fit of temporal data E(t)(k) ≈ c
(k)
1 t + c

(k)
0 , where c

(k)
1 =energy growth.

Calculate ε such that c
(k)
1 (ε) = 0 (no energy growth) using root-finding algorithm.

Perform update η(k+1) = η(k) + ε.

if ||c(k)
1 || < TOL

X := X (k).
terminate the algorithm.

end

end
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